STEP-BY-STEP PROCEDURES FOR:

- making the finite element model of the Upper San Fernando Dam

1. Make finite elements for 3 areas & SORT:

download versat-2d_2024.03MINI_ak-2.4M
(run password="gwu")

(1). Start VERSAT-2D Processor by "Accept" terms:

 Image: Setting define tools view modify run help

 Image: Setting define t

- (2). Change view option: VIEW => Draw Marker for Node/Elem => Show Marker Only
- (3). under **SETTING**, load "USF_m_1.log" & under **File**, load data "USF_1_view_only.sta"

USF_2017: Dynamic Finite Element Analyses of the Upper San Fernando Dam Using a Finer Mesh

Note: The colored soil units (in previous slide) can be shown by doing the following: VIEW Model View Options => Show x, y axis; Show Material color

19 February 2017

19 February 2017

by Dr. G Wu

(7). Make Area 3: 23 x 7 by: [under SETTING, load "USF_upper_dam.log" for a larger view] **TOOLS** => Draw finite element grid => enter: 23, 7, 0; OK Draw Elements Snap sequentially nodes Element Distribution N4, N9, N6 and N5 to create the grids below side 2 side 1 380.0 No. of 23 17 USF 2017: Dynamic Finite Element Analyses of the Upper San Fernando Dam Using a Finer Mesh element 375.0 Other Nodes (x, y) Node.4 (-17.51,366) 370.0 Zone 7: [1] X23@1.57m & Y7@0.78 m Node.5 (-3.05.371.46) Node.6 (3.05,371.46) Node.8 (7.61.366) 365.0 Element Node.9 (18.366) 0 material no 360.0 [2] Zones 5,6: X43@3.0 m & Y12@1.0 m/ 355.0 350.0 345.0 340.0 335.0 N14(16) 330.0 325.0 -140.0-130.0-120.0-110.0-100.0-90.0 -80.0 -70.0 -60.0 -50.0 -40.0 -30.0 -20.0 -10.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0

2818 nodes 2677 element(s) position x=-160.000 y=381.532 STATIC ON USF_1: Sketch a Plot for Five Soil Units

1. Make finite elements for 3 areas & SORT

(8). sort the Mesh under **MODIFY** => Clear duplicate nodes => Sort nodes (v)/element(h)

(9). Under File =>SAVE Model Data as "USF_2.sta"; so it can be reloaded if needed.

19 February 2017

2. Make zone boundaries forming the Clay Core & SORT!

- (1). under **SETTING**, load "USF_upper_dam.log"
- (2). under **TOOLS** => draw a line.. ; snap nodes N7 and N11 to create a line;
- (3). again, draw a line from nodes N7 to N8;
- (4). again, draw a line from nodes N10 to N11;
- (5). sort the Mesh under MODIFY => Clear duplicate nodes => Sort nodes (v)/element(h); Total 2835 nodes, 2704 elements;

mesh creation completed!

(6). under File, SAVE model data to "USF_3_mesh.sta" for future use (if required).

19 February 2017

by Dr. G Wu

3. Assign soil unit no. for all zones; Define soil parameters, Adjust D/S layer thickness, Set RUNs (layers, water tables, etc.), boundary, water loads (in RUN4)

- (1). under TOOLS => Assign soil zones; snap nodes N7, N11, N10, N8; type 3 (Clay Core) for the input box; refresh view to see blue zone (shown below)
- (2). do the same for all other soil zones
- (3). under File, SAVE model data to "USF_4_temp.sta" for recovery, if required.

3. Assign soil unit no. for all zones; Define soil parameters, Adjust D/S layer thickness, Set RUNs (layers, water tables, etc.), boundary, water loads (in RUN4)

(4). do the same for all other soil zones (note: Use No. 6 for hydraulic fill above water) under **SETTING** => load "USF_Model.log" and refresh view (with *Show Material color* On)

3. Assign soil unit no. for all zones; Define soil parameters, Adjust D/S layer thickness, Set RUNs (layers, water tables, etc.), boundary, water loads (in RUN4)

(5). RUN1: under **DEFINE** => setup static analysis => Add a layer: 1000 elements; repeat for 500, 509; APPLY and EXIT SETUP; refresh view with "Show layers by color" ON

3. Assign soil unit no. for all zones; Define soil parameters, Adjust D/S layer thickness, Set RUNs (layers, water tables, etc.), boundary, water loads (in RUN4)(5).

(6) Under DEFINE => Input material parameters, as per table below [APPLY ALL] (use Kg/3 and Kb/3 for static analysis; use the same parameters for No. 2 and No. 6) Table 1. Soil stiffness and strength parameters of the Upper San Fernando Dam (Seed et al. 1973).

Soil unit	Soil material	Unit weight (kN/m ³)	Strength par	ameters	Stiffness parameters*		
			c' (kPa)	φ' (°)	K _{2max}	Kg	K _b
1	Rolled fill	22.0	124.5	25	52	1128	2821
2	Hydraulic fill	19.2	0	37	30	651	1630
3	Clay core	19.2	0	37	†	651	1630
4	Upper alluvium	20.3	0	37	40	868	2170
5	Lower alluvium	20.3	0	37	110	2387	6000

*Modulus exponents (m = n = 0.5) were used for all soil units.

(7). under **DEFINE** => setup static analysis => click "NEW RUN" to setup RUN 2, 3, and 4 (see USF_4-FINAL.sta for more details on sequence of static analysis, RUN 1, 2, 3, &4)
(8). re-load setting file: "USF_m_1.log"

Under **TOOLS** => Assign boundary ...; snap two nodes at the base to assign "fixed"; also do two side boundaries ("free Y"); refresh view with "Show boundary.." ON

3. Assign soil unit no. for all zones; Define soil parameters, Adjust D/S layer thickness, Set RUNs (layers, water tables, etc.), boundary, water loads (in RUN4)

(9). In RUN4, apply water loads on the model surface under the reservoir

note: pressure values = 9.81 x water head from reservoir to the surface.

(a). under **TOOLS=>** Apply distributed load, snaps nodes N2, N3, and enter two pressure values of "156.0" that normal to the surface;

- (b). also for N3, N4 with "156.0" and "39.1" as values;
- (c). also for N4, N1078 with "39.1" and "0" as values.

Refresh view with "show load vectors" ON

(10) under File, SAVE model data to "USF_4_FINAL.sta"; ready for RUN

4. Final Check & RUN

(1). Check model RUN3:

re-load setting file: "USF_Model.log"; refresh view with "Show layers by color" "Show boundary..", "Show load vectors" and "Show water leel" "Show x, y axis" ON

Note: RUN2 only applies the water table (blue line in the figure below) in 4 increments.

4. Final Check && RUN

- (2). Check RUN4 (apply new water table in blue and water loads, both in 6 increments)
- (3). Check soil parameters under RUN1 (they will be carried forward, unless reassigned!!)

Step 2: Select File to Start

5. Setup the dynamic analysis:

5. Setup the dynamic analysis:

(1) Download VERSAT-2D

(2). Start VERSAT-2D Processor by "Accept" terms:

WERSAT-2D STATIC AND DYNAMIC FINITE ELEMENT ANALYSIS OF CONTINUA

File SETTING DEFINE TOOLS VIEW MODIFY RUN HELP

🥯 🚰 🕞 🔎 OFF 🗛 🖊 🤸 样 💷 🖬 唑 🚺 🖊 🦻 🏹 🌑

- (3). under **SETTING**, load "USF_model.log" & under File, load data "USF_4_FINAL.sta"
- (4). under **SETTING** : Dynamic on; click "YES"
- (5). under **DEFINE** : General parameters, click "nonlinear effective stress...", & new title
- (6). under **DEFINE** : Setup dynamic analysis: (a) enter "2704" under NPRE; and (b) enter
- numbers for node/elem time histories (TH). leave blank if TH not wanted. "APPLY"
- (7). Under **DEFINE**: Input material parameters:
 - (a). update Kg, Kb with values listed on Table 4 (Slide No. 12),
 - (b). input PWP parameters in [2] hydraulic fill (using values for No. 2a in Table 4)
 - (c). APPLY ALL, reload this window and check!

Material		Equivalent				Residual strength	
No.	Soil description	$(N_1)_{60}$	CRR	α	θ	(kPa)*	K _c LIQ
2a	Upstream hydraulic fill	14	0.154	3.0	0.1	23.0 (480)	400
2b	Downstream hydraulic fill	14	0.154	3.0	0.1	23.0 (480)	400
2c	Hydraulic fill in the downstream free field	14	0.154	3.0	0.1	14.4 (300)	400

Table 4. Pore-water pressure parameters and residual strengths used in Seed et al. (1976) pore-water pressure model.

* Pounds per square feet in parentheses.

5. Setup the dynamic analysis:(7). (b). If Wu(2001) PWP is used, then use the values in Table 3 below:

Material					Residual		Equivalent
No.	Soil description	C_1	C_2	М	strength (kPa)*	K _c LIQ	$(N_1)_{60}$
2a	Upstream hydraulic fill	0.32	1.25	320	23.0 (480)	400	14
2b	Downstream hydraulic fill	0.32	1.25	320	23.0 (480)	400	14
2c	Hydraulic fill in the downstream free field	0.32	1.25	320	14.4 (300)	400	14

Table 3. Pore-water pressure parameters and residual strengths used in the modified MFS model.

* Pounds per square feet in parentheses.

- (8). Get ready to run (create a new folder "Dynamic" for dynamic analysis):
 - (a). under File, SAVE model data as "USF_Seed.DYN" input master file to run in (9).
 - (b). copy "USF_4_FINAL.pr4" to "USF_4_FINAL.PRX" copy results from static run
 - (c). manually prepare (using notepad) "USF_4_FINAL.ACX" [NOTES: (this is already done for you !!) *ACX, ACY (hori, vert base accelerations),
- (9). Run versat-d2d

i —		······································			
Running VERSAT-D2D	— 🗆	are to be prepared manually.			
Step 1: Get Authorization from Internet		Format same for ACX, ACY, VEX, FXY:			
User Name gwu	Abort Analysis (warning: don't use x-button	Line 1: Title			
		Line 2: NPOINT, DT, FAMPL, NRVSUB			
Password 1944	This license expires on: 12/31/2024 12:00:00 AM	Line 3: NLINE, NoPerLine			
Connect Now	12.00.007.00	data separated by comma (m/s^2, ft/s^2			
Step 2a. Load csv File for multi-runs:	Step 2b: Select .dyn File >> START	; m/s or ft/s (velocity); or kN/m for forces)			
III_EQIEVEIS WITH_EQIECOIDS					

19 February 2017

*.VEX (hori. outcropping velocity), *.FXY (force)

* PRX (existing stresses when NPRE>0)

February 2017 Analysis Model

- 2835 Nodes and 2704 Elements Note: 678 nodes and 625 elements used in 2001 model in Wu (2001) - subjected to 1971 San Fernando EQ Pacoima Record (PGA 0.6g) (Wu 2001)

Note: Feb. 2017 Computed displacements at Node points: N1150 (0.77 m,-0.52 m); N1962(2.72m, -0.40m) with Seed's PWP Model; N1150 (0.42 m,-0.44 m); N1962(2.54m, -0.50m) using Wu(2001) PWP Model:

February 2017 Analysis Results:

- Factor of Safety Against Liquefaction using Seed's PWP model

February 2017 Analysis Results:

Computed Deformed Ground (RED) on original ground (black) with Seed's PWP model

