

Keynote Lecture:

Dynamic Analyses of an Earthfill Dam on Over-Consolidated Silt with Cyclic Strain Softening

W.D. Liam Finn University of British Columbia, BC, Canada

Guoxi Wu BC Hydro, Burnaby, BC, Canada

University of BC - Wutec Geotechnical - BChydro

John Hart Middle Earthfill Dam

BChydro

An aerial view of the John Hart Middle Earthfill Dam in British Columbia, Canada

University of BC

Summary of Geotechnical Investigations

Ŀ

TYPICAL CROSS SECTION

THE MIDDLE EARTHFILL DAM – A TYPICAL CROSS SECTION:

Existing slurry trench cutoff wall

University of BC

U

2

<u>е</u>

ш Z

Ŀ

2

.....

University of BC

Atterberg Limits

BChydro

Atterberg Limits of the Lower Silt on Casagrande plasticity chart

The Lower Silt consists of 70 – 80% silt size particles and 20 – 30% clay size particles; but it is classified as low plasticity clay (CL)

Ŀ

University of BC

Pre-consolidation pressures

Estimated pre-consolidation pressures from Su estimated from field vane shear tests: 700 to 1170 kPa based on empirical equations Su vs. OCR etc

DH12-09 Shelby Tube #	Top Elev. (m)	σ _p ' (kPa)		
		Casagrande Method	Energy method	
14A	99.99	860	825	
16A	98.07	-	-	Sample disturbed
20A	94.44	1170	1030	

Note:

ENGINEERING

 $\sigma_{\rm p}{'}$ = 830 kPa was then used in static and cyclic DSS tests of the Lower Silt with in-situ OCR

Pre-consolidation pressures from 2012 laboratory

CRS consolidation tests

University of BC

BChydro 🖸

undrained shear strengths

Static undrained shear strengths of the Lower Grey Silt

University of BC

U

GINEERIN

2

ш

Mohr Coulomb strength parameters

Static shear strength envelope and Mohr Coulomb strength parameters

University of BC

BChydro 🗯

Static Factor of Safety for D/S slope

Note: FoS = 1.409 using Mohr Coulomb static Strength parameters

BChydro

University of BC

Cyclic DSS results

Cyclic stress – strain response of 18A-CDSS2 $(\sigma'_{v0}$ = 360 kPa, σ'_{p} = 360 kPa, OCR=1.0, static bias of 36 kPa)

U

Cyclic DSS results

Cyclic DSS test results:

- 1. The Lower Silt showed strain-softening under cyclic loading, similar to sand liquefaction
- 2. 5% strain criteria seem to be representative
- 3. testing OCR is critical to response
- 4. others

post cyclic monotonic DSS

Typical post cyclic-softening static DSS test results

University of BC

U

ENGINEERIN

Cyclic resistance CRR

Cyclic resistance from cyclic DSS tests with estimated in-situ OCR of the Lower Silt

University of BC

U

2

-~

ш Z =

U

2

.....

Post cyclic-softening strengths

Post cyclic-softening undrained shear strengths

University of BC

U

N N N

ш

ш Z

U

2

BChydro 🖸

Factor of Safety of the D/S slope using post cyclicsoftening strengths for the Lower Silt

University of BC

Factor of Safety of the D/S slope using remolded strengths for the Lower Silt

University of BC

BChydro 🖸

ENGINEERING

VERSAT Sand model for Sandy soils

Nonlinear relationship between the shear stress and the shear strain:

$$\tau_{xy} = \frac{G_{\max}\gamma}{1 + G_{\max}/\tau_{ult} \bullet |\gamma|}$$

$$G_{\max} = K_g P_a (\frac{\sigma_m'}{P_a})^m$$

 τ_{ult} = ultimate shear stress in the hyperbolic model,

Two options:

- 1. shear strength at start of dynamic loading
- 2. proportional to the initial shear modulus G_{max}

$$\tau_{ult} = \frac{G_{\max}}{R_f}$$

University of BC

BChydro 🛈

VERSAT PWP model for Sandy soils

Three pore water pressure (PWP) models:

- Martin-Finn-Seed (MFS) model (1976)
- Modified MFS Pore Water Pressure Model

 $E_r = M \bullet (\sigma_{v0}' - u)$

• Seed's Pore Water Pressure Model

$$r_u = \frac{2}{\pi} \arcsin(\frac{N_{15}}{15})^{1/26}$$

$$N_{15} = \left(\frac{\tau_{cyc}}{\tau_{15}}\right)^{\alpha}$$

Where

 α is a shear stress conversion constant that is directly related to the magnitude scaling factor (MSF) (Wu 2001)

 τ_{cyc} is the shear stress caused by earthquake τ_{15} is the shear stress required to cause liquefaction in 15 evolution and he determined from (N)

in 15 cycles, can be determined from $(N_1)_{60}$

BChydro 🖸

Nonlinear hyperbolic relationship between the shear stress and the shear strain:

BChydro 🖸

BChydro

Strain softening but dilative SILT model for the Lower Silt

University of BC

VERSAT Dilative SILT Model Calibration

a). With no static bias: 20A-CDSS3 σ_{vo} '= 500 kPa

Ŀ

INEERIN

U

2

ш

VERSAT Dilative SILT Model Calibration

a). With no static bias: 20A-CDSS3 σ_{vo} '= 500 kPa

U

VERSAT Dilative SILT Model

Dilative SILT Model Equations:

$$\tau_{xy} = \frac{G_0 \gamma}{1 - |\gamma| / \gamma_{ult}}$$

$$G_0 = [1 + \frac{12}{r_{u_0}}(1 - r_u)]G_{liq}$$

$$\gamma_{ult} = \gamma_{H0} + \frac{r_u - r_{u_0}}{1 - r_{u_0}} (\gamma_H - \gamma_{H0})$$

 γ_{H0} is ultimate shear strain (%) on initial strain softening for $r_u = r_{u_0}$; γ_H is ultimate shear strain (%) at nth cycle of strain softening for $r_u = 1.0$; G_{liq} is initial shear modulus at nth cycle of strain softening, i.e., cylic softening of silts at $r_u = 1.0$.

University of BC

BChydro 🗘

VERSAT Dilative SILT Model Calibration

b). With static bias: 13A-CDSS5 σ_{vo} '= 360 kPa, static bias 90 kPa

Ŀ

NGINEERIN

ш

VERSAT Dilative SILT Model: CRR

Cyclic resistance of over-consolidated Lower Silt from cyclic DSS tests & Calibrated in VERSAT-2D Silt Model, and also in FLAC UBCSAND model

University of BC

U

GINEERIN

2

ш

BChydro 🗯

BChydro

- 1949 M=8.1 Queen Charlotte Islands
- > 1946 M=7.3 Vancouver Island
- > 1918 M=7.0 Vancouver Island
- 1872 M=7.4 Washington States
- > 1700 M=9.0 Cascadia

U

2

BC Hydro PSHA Project

BChydro

BC Hydro Seismic Hazard Project :

- Carried out as a SSHAC Level 3 study
- The goal is to develop inputs that represent the composite distribution of the informed scientific community

2012 tentative seismic parameters (1/10,000) for John Hart Site:

- Peak Ground Acceleration (PGA) is 0.66g
- The Cascadia subduction (interface) event makes about 70% of the hazard contribution, and the event is to be included in seismic stability assessment.
- Further correction on the seismic parameters is needed once the actual measured Vs30 of the site rock is considered.

University of BC

BChydro

Input Ground Motions from

2012 tentative seismic parameters (1/10,000) for John Hart Site:

#	Symbol (short name)	Earthquake Record	Record PGA (g)	Record Arias Intensity (Al)	P1 : 1/10,000	
					Scaling Factor	Scaled PGA
1	Hual	Hualane L, Chile Maule 2010	0.383	7.74	1.064	0.407
2	Myg	MYG009 (Taiwa) EW, Japan Tohoku 2011	0.536	5.81	1.160	0.622
3	Tcu	Tcu071 W, Taiwan Chi Chi, 1999	0.567	11.54	0.84	0.48
4	Tabas	Tabas LN, Iran Tabas, 1978	0.836	9.33	0.60	0.50
5	Chl	Chalor Rd 070, US Northridge, 1994	0.225	0.61	2.18	0.49

2010 Chile Record

Time history for subduction event: 2010 Chile Maule Mw8.8 Event at Hualane_L (SF1.064)

University of BC

BChydro 🛈

2011 Japan Record

Time History of Japan Tohoku MYG009 record, to be scaled up 1.16

Ŀ

NGINEERIN

BChydro 🖸

BChydro

VERSAT-2D FINITE ELEMENT & FLAC FINITE DIFFERENCE DYNAMIC TIME-HISTORY ANALYSES

Reasons:

At BC Hydro we are not convinced, due to the complexity of soil behavior, merits and shortfalls in each computer program/constitutive model, and individual's modeling technique and experience, that one computer program using one soil constitutive model will provide the level of confidence in solutions that is suitable for decisions on seismic dam stability.

Therefore, it is becoming a practice at BC Hydro to use two independent methods of dynamic analyses (VERSAT primary, FLAC for checking) for investigating dam performance under seismic loading.

University of BC

VERSAT-2D finite element time-history analyses

The equations of motions describing the incremental dynamic force equilibrium

$$[M]\{\Delta \frac{d^2 \delta}{dt^2}\} + [C]\{\Delta \frac{d \delta}{dt}\} + [K]\{\Delta \delta\} = \{\Delta P\}$$

Where[M]= mass matrices[C]= viscous damping matrices[K]= tangent stiffness matrices $[\Delta\delta]$ = incremental displacement matrices $[\Delta\delta/dt]$ = incremental velocity matrices $[\Delta d^2 \delta/dt^2]$ = incremental acceleration matrices $[\Delta P]$ = incremental external load matrices

Input ground motions Options

- 1. Acceleration input at the rigid base, incremental inertial forces on the soil mass caused by base accelerations are computed using the Newton's law and applied as $[\Delta P]$.
- 2. the velocity input at the elastic base, incremental shear forces at the base nodes are determined and applied as [ΔP].

Δc [Δc [Δc

University of BC

BChydro 🖸

VERSAT Model – A full mesh

VERSAT-2D finite element model showing soil material zones and ground water table of the Middle Earthfill Dam

University of BC

VERSAT Model: A portion of mesh

University of BC

A main portion of the FLAC model

BChydro

Key Features:

- UBCSAND model used for modeling the Lower Silt, a modification of Mohr-Coulomb stress and strain relationship
- Permeability of soils is used in FLAC groundwater flow mode
- Velocity time history is input at the base of the rigid-base model

Ŀ

ENGINEERIN

Permeability in FLAC model

Soil permeability used in FLAC groundwater flow mode

University of BC

BChydro 🗯

VERSAT Shear Stress Strain Response

VERSAT CSRs

BChydro

Peak CSRs along a soil column at x=110 m (i.e., 110 m downstream of the slurry trench cutoff) from two subduction and three crustal input motions: VERSAT results

E N G I N E E R I N G

BChydro

Factors of safety against liquefaction or cyclic strain softening (FS_liq) from the Chi Chi crustal input motion

E N G I N E E R I N

U

Computed ranges of horizontal displacements from the Chi Chi crustal input motion

University of BC

A distribution of shear strains computed from the Chi Chi Crustal Input Motioin

VERSAT & FLAC: X-DISP

FLAC preliminary results: Ranges of horizontal ground displacements from the Chi-Chi crustal input motion, comparison with VERSAT results

University of BC

VERSAT subduction FS_liq

BChydro

FS_liq from the Tohoku MYG009 subduction input motion, failed at 114 sec

VERSAT subduction X-DISP

Computed ranges of horizontal displacements from the Tohoku MYG subduction input motion

University of BC

BChydro 🖸

VERSAT subduction **STRAINS**

BChydro

₩

A distribution of shear strains computed from the Tohoku MYG subduction input motion, at 114 sec of motion

VERSAT subduction

BChydro

A deformed cross section (with colored soil zones) computed from the Tohoku MYG subduction motion

U

VERSTA & FLAC: subduction X-DISP

FLAC preliminary results: Ranges of horizontal ground displacements from the Tohoku MYG subduction input motion, comparison with VERSAT results

University of BC

BChydro 🖸

U

VERSAT & FLAC: Strains

comparison of shear strains from all five earthquake input ground motions **FLAC**

VERSAT

ABS(ENGINEERING SHEAR STRAIN) %

BChydro

University of BC

Ŀ

ш

- Laboratory cyclic direct simple shear tests confirmed that cyclic resistance of the Lower Silt increase with overconsolidation ratio (OCR);
- 2. in addition, test results also showed that static shear stress bias can significantly reduce cyclic resistance of the Lower Silt.
- 3. In dynamic time-history analyses using VERSAT, calibration of the Silt Model for the Lower Silt was carried out using results of the cyclic DSS tests and taking into account the in-situ OCR and initial static shear stress conditions of the Lower Silt.
- 4. FLAC dynamic analyses the UBCSAND model for the Lower Silt was also calibrated using the results of cyclic DSS tests

SUMMARY AND CONCLUSIONS

- 5. the two dynamic analyses give somewhat different ground deformation mechanisms on the downstream slope of the dam
- 6. it is advisable to check dam performance by independent analyses using different programs and constitutive models; in order to bound solutions of the problem and provide confidence in a decision making.
- 7. A dilemma will occur when two analyses result in completely different conclusions in terms of dam performance. More experience must be gained and compiled by the engineering community to validate an individual analysis method or a computer program (VERSAT, FLAC, and others).

BChydro 🖸